ASME LEARNING & DEVELOPMENT
CORPORATE TRAINING COURSE CATALOG
2022-2023

Live and On Demand courses from top engineering experts
Training for Engineering Transformation

In the last century alone, the engineering industry has boldly brought us through several industrial revolutions. Great engineering achievements have positively impacted humankind. But as remarkable as these innovations are, there are many more engineering opportunities to be realized.

At ASME Learning and Development (L&D), our mission is to advance the skills and grow careers of engineering professionals and their teams. Our vision is to empower the global engineering community to solve the challenges of today and tomorrow.

Your Workforce Development Resource

ASME Learning and Development has been collaborating with engineering organizations to aid in their professional development initiatives for decades. ASME Corporate Training can upskill your team and solve for your organization’s unique needs. From working with you to standardize your business processes with best practices and boosting productivity to improving employee engagement, we can help you maximize the potential of your workforce all while growing your organization’s competitive edge.

Flexible Training for Your Team

Work with ASME Corporate Training to create a comprehensive learning solution for your workforce, built from our broad range of courses, learning paths and credentials. With technical and non-technical topics available in a variety of formats, including live and on demand, we collaborate with you to create a professional development learning solution based on your workforce’s unique schedules, preferences, responsibilities and aspirations.

Top Industry Experts

Our team of accomplished educators, with years of technical knowledge and experience, focus on you and your organization to provide targeted world-class professional engineering instruction. All of our educators are ASME-approved and meet IACET accreditation requirements. Many also serve as ASME Code Committee members and/or volunteers. Our top educators can also deliver learning experiences globally, often in multiple languages.
CONTENTS

ASME Virtual Classroom
- Geometric Dimensioning & Tolerancing .. 5
- Manufacturing .. 5
- Modeling & Simulation .. 5
- Design, Materials, & Analysis ... 5
- Boilers & Pressure Vessels .. 6
- Piping & Pipelines .. 7
- Nuclear .. 8
- Fluids & Heat Transfer .. 9
- Welding & Brazing .. 9
- Bolting .. 10
- Management, Leadership, & Innovation .. 10

Learning Path
- Manufacturing .. 13
- Piping & Pipelines .. 12
- Boilers & Pressure Vessels .. 12
- Bolting .. 12
- Nuclear .. 13
- Manufacturing .. 13
- Robotics .. 13
- Management, Leadership, & Innovation .. 13

Guided Study
- Geometric Dimensioning & Tolerancing .. 15
- Design, Materials, & Analysis ... 15
- Boilers & Pressure Vessels .. 15
- Nuclear .. 15
- Fluids & Heat Transfer .. 15
- Bolting .. 15
- Welding & Brazing .. 16
- Management, Leadership, & Innovation .. 16

Self Study
- Geometric Dimensioning & Tolerancing .. 18
- Manufacturing .. 18
- Boilers & Pressure Vessels .. 18
- Piping & Pipelines .. 19
- Nuclear .. 19
- Fluids & Heat Transfer .. 20
- Gas Turbines .. 20
- Bolting .. 20
- Management, Leadership, & Innovation .. 20
- Bioprocess .. 20
- Robotics .. 21
ASME VIRTUAL CLASSROOM
Live online courses with an instructor and peers.

Remote Learning Reinvented
ASME Virtual Classroom is a live instructor-led learning solution that provides working professionals with an enhanced classroom learning experience through video conferences with ASME’s world-class instructors, collaboration with peers, discussion boards, online assessments, and much more.

With thousands of hours of successful virtual instruction already logged, ASME Learning & Development is poised to provide you with training you can trust.

ASME Virtual Classroom delivers an enhanced online learning experience with:

- Real-time live learning from expert instructors
- Interactive Q&A
- Discussion boards, polls and surveys
- Online assessments (when applicable)
- Digital access to course material
- Digital certificate of completion
- Collaboration with peers

“THE COURSE MATERIAL, INSTRUCTOR, AND MODERATOR WERE EXCELLENT”
VCPD570
Geometric Dimensioning & Tolerancing Fundamentals
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Read and create engineering drawings and interpret design intent per ASME Y14.5 - Geometric Dimensioning and Tolerancing (GD&T).

VCPD603
ASME Y14.5 Geometric Dimensioning and Tolerancing (GD&T) Design and Applications Combo Course
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Gain a comprehensive understanding of Geometric Dimensioning and Tolerancing (GD&T) and apply it to your designs and stacks per ASME Y14.5.

VCPD661
Geometric Tolerancing Applications and Tolerance Stacks
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Apply Geometric Dimensioning and Tolerancing (GD&T) to your designs and perform tolerance stacks through authentic case studies.

VCPD841
Verification and Validation in Scientific Computing
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Learn techniques and methods for verification of numerical simulations, validation of mathematical models, and quantify uncertainty in simulations.

VCPD268
Fracture Mechanics
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Gain a practical understanding of fatigue and fracture calculations using the latest methodologies, including weight functions and the FAD approach.

VCPD842
Probabilistic and Uncertainty Quantification Methods for Model Verification & Validation
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Articulate precise approximation & assumption statements, quantify the total uncertainty, and make risk-informed decisions with any model.

VCPD231
Applied Shock and Vibration Analysis and Design
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Learn how to compute natural frequencies and response to dynamic forces, and designs to reduce vibration of new and existing systems.
Select and size heat exchangers for a given duty with various methods of analysis, advantages & disadvantages, and design considerations.

Learn root cause analysis (RCA) fundamentals, explore RCA tools' purpose and application, and perform RCA on real-world problems to find solutions.

Apply the requirements of API 579/ASME FFS-1 to make run, repair, and replacement decisions for pressure vessels, piping, and tanks.

Understand and apply ASME’s BPV Code, Section VIII, Division 1 to pressure vessel design and construction.

Understand the design and construction of pressure vessels and comply with ASME BPVC Section VIII Div. 1, & API 579/ASME FFS-1 to ensure integrity, reliability, and safety of pressure equipment.

Apply various requirements to the inspection, repair and alteration of in-service pressure vessels and equipment.

Leverage the requirements of Section VIII, Div 1, including design, materials, fabrication, testing and inspection of pressure vessels.

Apply fitness-for-service assessment methods to make run-or-repair decisions on pressure equipment, piping and pipelines.

Master the complexities of fitness-for-service and repair assessments with industry best practices and a special focus on the API579-1/ASME FFS-1.
Gain knowledge of boiler operation and maintenance per the requirements of ASME BPVC Sections I, III, IV, VI, VII, and VIII.

Gain knowledge of boiler inspection and methods for repairs and alterations in compliance with ASME BPV, NBIC and API regulations.

Comply with BPVC codes to safely operate and maintain boilers throughout their lifecycle from operation & inspection to repairs & alterations.

Understand the full piping life cycle, comply with ASME B31.3, B31.1, & API 579/ASME FFS-1, and ensure system integrity, reliability, and safety.

Apply the requirements of ASME B31.3 to design, analysis, materials, fabrication, testing and inspection of process piping systems.

Apply the ASME B31.3 Code requirements throughout the entire process piping plant lifecycle and prevent system failures.

Understand and apply the ASME B31.1 requirements to power piping system design and analysis including criteria, requirements and failure modes.
VCPD839
ASME B31.1 Power Piping Materials Fabrication, Examination & Testing
PDHs: 15
CEUs: 1.5
Format: Virtual Classroom
Explore the background and meet the requirements of ASME B31.1 focusing on power piping construction and maintenance.

VCPD840
ASME B31.1 Power Piping Design, Materials, Fabrication, Examination and Testing Combo Course
PDHs: 40
CEUs: 4
Format: Virtual Classroom
Employ the ASME B31.1 requirements throughout the entire system lifecycle including safe and effective design, construction, operation, and maintenance of power piping.

VCPD370
ASME B31.8 Gas Transmission & Distribution Piping Systems
PDHs: 23
CEUs: 2.3
Format: Virtual Classroom
Gain an understanding of ASME B31.8 including design, operation, maintenance, and repair of natural gas distribution and transmission pipelines.

VCPD391
ASME B31.4 Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids
PDHs: 15
CEUs: 1.5
Format: Virtual Classroom
Adhere to principles of ASME B31.4 Code for the design, construction, and operation of liquid pipeline systems while minimizing risks.

VCPD410
Detail Engineering of Piping Systems
PDHs: 23
CEUs: 2.3
Format: Virtual Classroom
Develop Piping and Instrumentation Diagrams (P & IDs), plot plans, and arrangements for process, power and utility equipment piping systems.

VCPD777
Pipe Sizing, Pipe Wall Stresses, and Water Hammer
PDHs: 23
CEUs: 2.3
Format: Virtual Classroom
Understand the relationship between pipe wall stresses and the changes in fluid pressure and velocity to predict and prevent pipe wall failure.

VCPD763
Centrifugal Pumps: Testing, Design, and Analysis
PDHs: 23
CEUs: 2.3
Format: Virtual Classroom
Understand and apply key principles, design methods, and analysis strategies related to centrifugal pumps for piping systems and pipelines.

VCPD853
Pump Design, Selection & Sizing for Optimum Performance Combo Course
PDHs: 53
CEUs: 5.3
Format: Virtual Classroom
Learn and apply key principals related to pumps including, selection, installation, design methods, operation, maintenance, and analysis strategies of pumps and valves.

VCPD859
PDHs: 46
CEUs: 4.6
Format: Virtual Classroom
Predict and prevent the impact of shock and vibration in structures exposed to high-energy fluid flow, base excitations & earthquakes, and rotating equipment or transportation.

VCPD675
ASME NQA-1 Lead Auditor Training
PDHs: 30
CEUs: 3
Format: Virtual Classroom
Review auditing program methods and techniques to conduct audits of nuclear quality assurance programs per ASME NQA-1 and N45.2.23 auditors.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>PDHs</th>
<th>CEUs</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCPD606</td>
<td>ASME NQA-1 Requirements for Computer Software used in Nuclear Facilities</td>
<td>15</td>
<td>1.5</td>
<td>Virtual Classroom</td>
<td>Learn to apply NQA-1 to the practice of developing, using, maintaining or procuring software used in nuclear facilities.</td>
</tr>
<tr>
<td>VCPD615</td>
<td>Nuclear Piping Systems ASME BPV Code, Section III and B311: Design, Integrity-</td>
<td>20</td>
<td>2</td>
<td>Virtual Classroom</td>
<td>Apply ASME Section III, Division 1, Subsections NB/NC/ND to the design, analysis, and qualification of nuclear power plant piping systems.</td>
</tr>
<tr>
<td>VCPD684</td>
<td>ASME BPV Code Section III, Division 1: Rules for Construction of Nuclear Facility Components and USNRC Regulations</td>
<td>30</td>
<td>3</td>
<td>Virtual Classroom</td>
<td>Explore Section III, Division 1, how it interfaces with other BPVC sections, and how it is implemented by the US NRC in its regulations.</td>
</tr>
<tr>
<td>VCPD692</td>
<td>ASME BPV Code, Section XI: Inservice Inspection of Nuclear Power Plant Components</td>
<td>38</td>
<td>3.8</td>
<td>Virtual Classroom</td>
<td>Understand ASME Section XI rules for in-service inspection, maintenance, testing, and requirements of nuclear power plant components.</td>
</tr>
<tr>
<td>VCPD672</td>
<td>Design-by-Stress Analysis per ASME BPV Code, Section III, Division 1: Class 1, 2 and 3 Components</td>
<td>30</td>
<td>3</td>
<td>Virtual Classroom</td>
<td>Apply Appendix XIII Design by Stress Analysis per Section III, Division 1 to vessels, pumps, valves and piping in nuclear power plants.</td>
</tr>
<tr>
<td>VCPD679</td>
<td>Fundamentals of Pumps and Valves and Their Selection for Optimum System Performance</td>
<td>30</td>
<td>3</td>
<td>Virtual Classroom</td>
<td>Learn the fundamentals, selection, installation, operation, maintenance, and troubleshooting of pumps and valves.</td>
</tr>
<tr>
<td>VCPD146</td>
<td>Flow Induced Vibration with Applications to Failure Analysis</td>
<td>23</td>
<td>2.3</td>
<td>Virtual Classroom</td>
<td>Learn and apply the latest design and analysis tools for the prediction and prevention of vibration in structures exposed to high energy fluid flow.</td>
</tr>
<tr>
<td>VCPD645</td>
<td>ASME BPV Code, Section IX: Welding, Brazing, & Fusing Qualifications</td>
<td>30</td>
<td>3</td>
<td>Virtual Classroom</td>
<td>Comply with the requirements of ASME Section IX rules for qualification of welding and brazing procedures and personnel.</td>
</tr>
<tr>
<td>VCPD359</td>
<td>Practical Welding Technology</td>
<td>30</td>
<td>3</td>
<td>Virtual Classroom</td>
<td>Understand welding technology, including applicable codes and standards, principles, procedures, symbols, material selection and preheat.</td>
</tr>
<tr>
<td>VCPD857</td>
<td>ASME BPV Code Section IX, Welding Principles, and Procedures Combo Course</td>
<td>60</td>
<td>6</td>
<td>Virtual Classroom</td>
<td>Gain a comprehensive understanding of welding terminology, materials science, processes, and meet the requirements of ASME BPV Code Section IX.</td>
</tr>
</tbody>
</table>
VCPD386
Design of Bolted Flange Joints
PDHs: 8 CEUs: 0.8 Format: Virtual Classroom
Understand and apply ASME codes and standards for bolted flange joints, specifically flange design for pressure vessels and piping.

VCPD601
ASME PCC-1 Bolted Joints and Gaskets
Design, Assembly, and Reliability Combo Course
PDHs: 38 CEUs: 3.8 Format: Virtual Classroom
Master bolted joints and gasket design, behavior and assembly principles per ASME PCC-1 2019.

VCPD577
Bolted Joint Assembly Principles Per ASME PCC-1-2019
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Identify the principles of joint design, assembly, and reliability per ASME PCC-1 2019.

VCPD850
Communicating and Problem Solving for Today’s Engineering
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Bridge the communications gap and navigate all business situations more effectively with key interpersonal skills.

VCPD513
TRIZ: The Theory of Inventive Problem Solving
PDHs: 23 CEUs: 2.3 Format: Virtual Classroom
Create breakthrough innovations by leveraging patterns documented in the world’s most inventive patents with TRIZ.

VCPD676
Strategic Thinking in Times of Change
PDHs: 8 CEUs: 0.8 Format: Virtual Classroom
Develop a strategic mindset, approach challenges with innovation and employ strategic thinking to add value to your organization.

VCPD851
Managing Others in Times of Change
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Reduce the impact of accelerated change, influence others and mitigate common leadership challenges.

VCPD475
The Engineering Manager: Engaging Today’s Workforce
PDHs: 15 CEUs: 1.5 Format: Virtual Classroom
Implement essential management skills, tackle common challenges engineering managers encounter and reach high levels of performance.

VCPD844
Essential Soft Skills for Today’s Engineering Professionals Combo Course
PDHs: 30 CEUs: 3 Format: Virtual Classroom
Maximize your business communication, leadership and interpersonal soft skills in all workplace situations.
VCPD860
Innovation and Strategic Thinking for Engineers Combo Course
PDHs: 30
CEUs: 3
Format: Virtual Classroom
Identify, prioritize, and realize engineering breakthroughs with practical tools and concrete methods in strategic thinking and innovation.

VCPD685
Management and Strategic Thinking to Lead High-Performing Engineering Teams Combo Course
PDHs: 23
CEUs: 2.3
Format: Virtual Classroom
Establish key managerial and strategic thinking skills to lead engineering teams and colleagues with experience, precision, and excellence.

VCPD467
Project Management for Engineers and Technical Professionals
PDHs: 23
CEUs: 2.3
Format: Virtual Classroom
Apply key PMI project management concepts, including big-picture thinking, repeatable processes, and increased efficiency.

VCPD784
Agile Project Management
PDHs: 15
CEUs: 1.5
Format: Virtual Classroom
Build critical knowledge of Agile guidelines from PMI / PMBOK, including hitting results in minimum time and the fail fast mantra.

VCPD836
Traditional and Agile Project Management for Engineers and Technical Professionals Combo Course
PDHs: 38
CEUs: 3.8
Format: Virtual Classroom
Learn both traditional and agile project management methodologies and gain a robust skillset for every engineering project or situation.
NEW ON DEMAND LEARNING PATHS

Learning Paths offer a combination of courses organized by our team into a recommended learning sequence.

CHOOSE FROM COURSES ON Y14.5 GEOMETRIC DIMENSIONING & TOLERANCING (GD&T), BPVC SECTION VIII, B31 POWER & PROCESS PIPING, NUCLEAR POWER PLANT COMPONENTS, AND MORE
LP107
ASME Y14.5 Geometric Dimensioning and Tolerancing (GD&T) Fundamentals Learning Path
PDHs: 7 Format: Learning Path
Understand the foundational rules, definitions, requirements and best practices of ASME’s Y14 Standards in ASME’s Fundamentals of Geometric Dimensioning & Tolerances Learning Path.

LP101
B31 Process and Power Piping Design
PDHs: 14 CEUs: 1 Format: Learning Path
Understand the principles of ASME’s B31 piping design code and apply best practices to process and power piping systems in ASME’s B31 Process and Power Piping Design Learning Path.

LP106
ASME BPV Code, Section VIII, Division 1: Pressure Vessel Combo Course (On Demand)
PDHs: 22 CEUs: 2.2 Format: Learning Path
Gain a comprehensive understanding of Section VIII, Div 1 requirements including design, materials, fabrication, testing and inspection of pressure vessels in this On Demand Learning Path.

LP109
Bolting Qualification Learning Path
PDHs: 12 CEUs: 1.2 Format: Learning Path
The Bolting Specialist Qualification Program is designed to train and evaluate a bolter’s ability to inspect, assemble, disassemble and tighten bolted joints in an effective and safe manner.

LP105
Ethics and Communication for Engineers
PDHs: 7 Format: Learning Path
Master critical communication skills and work through real world examples of ethical dilemmas for engineers in ASME’s Ethics and Communication for Engineers Learning Path.

LP103
Design for Additive Manufacturing with Metals Use Cases Package
PDHs: 6 CEUs: 0.6 Format: Learning Path
Apply Additive Manufacturing design concepts with three common AM use cases: Replication, Adaptation, and Optimization.

LP102
Design for Additive Manufacturing with Metals Professional Package
PDHs: 20 CEUs: 2 Format: Learning Path
Discover Additive Manufacturing’s role in the design of products, parts and components in ASME’s Design for Additive Manufacturing with Metals Learning Path.

LP104
Industrial Automation with Robotics
PDHs: 14 CEUs: 1.4 Format: Learning Path
Determine if industrial automation with robotics is a viable technological solution to improve an existing industrial production process in ASME’s Industrial Automation with Robotics Learning Path.
GUIDED STUDY COURSES

Online learning augmented with instructor-led activities and/or graded assignments to complete at your own pace. Courses run in 6-week sessions.

BUILD IN-DEMAND SKILLS AND LEARN HOW TO SOLVE REAL-WORLD CHALLENGES ON YOUR OWN SCHEDULE
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>PDHs</th>
<th>CEUs</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL501</td>
<td>ASME BPV Code, Section VIII, Division 1: Design & Fabrication of Pressure Vessels</td>
<td>23</td>
<td>2.3</td>
<td>Guided Study</td>
<td>Learn the rules for pressure vessel design and construction, with an overview of the requirements of Section VIII, Division 1.</td>
</tr>
<tr>
<td>EL502</td>
<td>ASME BPV Code, Section VIII, Division 2: Design & Fabrication of Pressure Vessels</td>
<td>23</td>
<td>2.3</td>
<td>Guided Study</td>
<td>Describe the use of alternative rules for the design and fabrication of pressure vessels given in ASME BPV Code, Section VIII, Division 2.</td>
</tr>
<tr>
<td>EL503</td>
<td>Overview of In-service Codes for Inspections, Repairs and Alterations of Pressure Equipment</td>
<td>15</td>
<td>1.5</td>
<td>Guided Study</td>
<td>Understand the requirements of inspection, repairs and alterations of pressure equipment per NBIC, API-530, and API-579.</td>
</tr>
<tr>
<td>EL504</td>
<td>Introduction to Geometric Dimensioning & Tolerancing (GD&T) Y14.5</td>
<td>23</td>
<td>2.3</td>
<td>Guided Study</td>
<td>Learn introductory geometric dimensioning controls for mechanical engineering drawings per ASME Y14.5 Dimensioning and Tolerancing standard.</td>
</tr>
<tr>
<td>EL505</td>
<td>Advanced Geometric Dimensioning and Tolerancing (GD&T) Y14.5</td>
<td>23</td>
<td>2.3</td>
<td>Guided Study</td>
<td>Gain advanced knowledge of geometric dimensioning controls for mechanical engineering drawings per the ASME Y14.5 Dimensioning and Tolerancing standard.</td>
</tr>
<tr>
<td>EL506</td>
<td>Introduction to Finite Element Analysis</td>
<td>23</td>
<td>2.3</td>
<td>Guided Study</td>
<td>Explain and use introductory Finite Element Analysis (FEA) concepts underlying the creation of elements to make accurate approximations.</td>
</tr>
<tr>
<td>EL507</td>
<td>Advanced Finite Element Analysis</td>
<td>23</td>
<td>2.3</td>
<td>Guided Study</td>
<td>Identify and demonstrate advanced Finite Element Analysis (FEA) skills including command-line input for Abaqus and design optimization in Abaqus.</td>
</tr>
<tr>
<td>EL508</td>
<td>Computational Fluid Dynamics</td>
<td>23</td>
<td>2.3</td>
<td>Guided Study</td>
<td>Gain an introduction to the principles and applications of CFD and apply the knowledge into use on commercial CFD codes, particularly ANSYS Fluent.</td>
</tr>
<tr>
<td>EL509</td>
<td>The Bolted Joint</td>
<td>23</td>
<td>2.3</td>
<td>Guided Study</td>
<td>Learn the fundamentals of bolts and bolted joints, including their strength, behavior, design approaches and failure prevention.</td>
</tr>
</tbody>
</table>

Design, Materials & Analysis GUIDED STUDY

Boilers & Pressure Vessels GUIDED STUDY

Fluids & Heat Transfer GUIDED STUDY

Bolting GUIDED STUDY
EL515
Principles of Welding
PDHs: 23 CEUs: 2.3 Format: Guided Study
Understand introductory principles of welding technology, process of welding and how it affects welded materials and structures.

EL516
ASME BPV Code, Section IX: Welding & Brazing Qualifications
PDHs: 23 CEUs: 2.3 Format: Guided Study
Learn the layout, scope, and use of Section IX of the ASME Boiler and Pressure Vessel Code, rules for qualification of welding and brazing procedures and personnel.

EL511
Project Management for Engineers
PDHs: 23 CEUs: 2.3 Format: Guided Study
Learn engineering project management skills including planning and implementing projects, communication strategies and overcoming lack of resources and impediments.
SELF STUDY COURSES

100% online independent learning at your own pace. Learners can enroll and start at any time. Courses are accessible for 90 days.

GET FLEXIBLE PROFESSIONAL DEVELOPMENT ON TECHNICAL AND NON-TECHNICAL TOPICS
EL559
ASME GD&T Fundamentals / ASME Y14.5 - 2018 Course (On Demand)
PDHs: 12 CEUs: 1.2 Format: Self Study
Read and create engineering drawings and interpret design intent per the latest version of ASME Y14.5 - Geometric Dimensioning and Tolerancing (GD&T) in this On Demand course.

EL560
Drawing Interpretation
PDHs: 23 CEUs: 2.3 Format: Self Study
Understand basic mechanical two-dimensional engineering drawings, drawing elements, part and section views, dimensions, tolerances, finish and welding symbols.

ZABC73
Y14.5-2018 Dimensioning and Tolerancing Overview
PDHs: 3 Format: Self Study
Overview of the contents and guidelines outlined in the ASME Y14.5 - 2009 Dimensioning and Tolerancing Standard

ZABC74
PDHs: 2 Format: Self Study
Introduction to ASME’s Y14 Standards, which provide guidelines for engineering drawing sheet layout

AM210
Design for Additive Manufacturing with Metals
PDHs: 10 CEUs: 1 Format: Self Study
Learn key foundational knowledge to design for Additive Manufacturing (AM) with metals.

AM214
Additive Manufacturing Manufacturability: Laser Powder Bed Fusion
PDHs: 4 CEUs: 0.4 Format: Self Study
Prepare for part manufacturability with Laser Powder Bed fusion (L-PBF).

AM223
Additive Manufacturing Material Properties
PDHs: 5 CEUs: 0.5 Format: Self Study
Understand materials properties for L-PBF parts including variability in material properties and how to account for this variability.

EL554
Introduction to ASME BPV Code, Section VIII, Division 1 (On Demand)
PDHs: 15 CEUs: 1.5 Format: Self Study
Understand and apply ASME’s BPV Code, Section VIII, Division 1 to pressure vessel design and construction in this On Demand course.

EL555
Inspection, Repair, and Alterations of In-Service Pressure Equipment (On Demand)
PDHs: 7 CEUs: 0.7 Format: Self Study
Apply various requirements to the inspection, repair and alteration of in-service pressure vessels and equipment in this On Demand course.
EL548
Failure Prevention, Fitness-for-Service, Repair and Life Extension of Piping, Vessels and Tanks
PDHs: 14 CEUs: 1.4 Format: Self Study
Learn methods and criteria of ASME B31, ASME VIII, API 579-1, ASME FFS-1, ASME PCC-2, NBIC parts 2 and 3, to make run-or-repair decisions on pressure equipment, piping and pipelines.

ZABC17
Essentials - BPV Code, Section V: Nondestructive Examination
PDHs: 3 Format: Self Study
Learn about the various applications of ASME BPV, Section V - Nondestructive Examination (NDE).

ZABC59
Essentials - PCC-2 Repair of Pressure Equipment & Piping
PDHs: 3 Format: Self Study
Review the contents of ASME's PCC-2 Standard, and learn about the repair of pressure equipment and piping.

ZABC9
ASME Boiler & Pressure Vessel Certification Process
PDHs: 3 Format: Self Study
Learn about ASME Conformity Assessment, the process for ASME Certification, and the requirements for obtaining non-nuclear Code Stamps.

ZABC14
ASME B31.1 Power Piping Code Overview (Online Course)
PDHs: 2 Format: Self Study
Introduction to the B31.1 Power Piping Code, and its relationship with ASME BPV Code, Section I.

ZABC12
Essentials - B31.8 Gas Transmission and Distribution Piping Systems
PDHs: 2 Format: Self Study
Overview of the scope of B31.8, including its history, the types of systems to which it applies, its organization, and the intended use of the Code.

ZABC15
ASME B31.3 Process Piping Code Overview (Online Course)
PDHs: 2 Format: Self Study
Introduction to the B31.3 Process Piping Code, how piping systems function and what the Code requirements are for various types of installations.

ZABC10
ASME Boiler & Pressure Vessel Certification Process
PDHs: 2 Format: Self Study
Learn about ASME Conformity Assessment, the process for ASME Certification, and the requirements for obtaining non-nuclear Code Stamps.

EL549
ASME BPV Code, Section XI: Inservice Inspection of Nuclear Power Plant Components
PDHs: 27 CEUs: 2.7 Format: Self Study
Understand ASME Section XI rules for in-service inspection, maintenance, testing, and the regulatory requirements of nuclear power plant components.

EL551
Nuclear Piping Systems ASME BPV Code, Section III and B31.1: Design, Integrity-Operability Assessment, and Repairs
PDHs: 15 CEUs: 1.5 Format: Self Study
Apply ASME Section III Division 1, Subsections NB/NC/ND to the design, analysis, and qualification of nuclear power plant piping systems in this On Demand course.
NQA-1 Practical Application
PDHs: 4 Format: Self Study
Review practical application of NQA-1 focusing on five of the principal requirements.

NQA-1 Part 1 – 18 QA Requirements
PDHs: 4 Format: Self Study
Overview of the ASME NQA-1 Nuclear Quality Assurance Standard and an in-depth look at Part I

Introduction to the Selection of Pumps
PDHs: 2 Format: Self Study
Introduction to pumps – the way they work, different types, and some basic applications

Introduction to the Selection of Valves
PDHs: 2 Format: Self Study
Overview of the considerations involved when choosing the appropriate valves for a system

Basic Gas Turbine Engine Technology Online Self-Study Course
PDHs: 10 Format: Self Study
Review the fundamental nature of gas turbine engines and the processes that affect their performance

Bolting Specialist Qualification Requalification Examination
Format: Self Study
Renew your ASME Qualified Bolting Specialist Certificate every 3 years in accordance with ASME’s PCC-1 Guideline

Introduction to ASME Standards & Certification
PDHs: 2 Format: Self Study
Introduction to standards: why we have them, the process for creating them, and who is responsible for maintaining them

Technical Writing for Engineers: Giving Readers What They Need
PDHs: 4 Format: Self Study
Learn techniques to cater your technical documents to a broad audience.

Ethics for Engineers: Doing the Right Thing When No One is Looking
PDHs: 3 Format: Self Study
Review the professional code of ethics that shapes engineering principles and identify your ethical concerns.

Essentials - Bioprocessing Equipment (BPE)
PDHs: 2 Format: Self Study
Learn how this ASME BPE Standard has improved the manufacturing practices of the bioprocessing and pharmaceutical industries.
IAR211
Fundamentals of Industrial Automation
PDHs: 2 CEUs: 0.2 Format: Self Study
Understand the techniques used in industrial automation with robotics and make suggestions for appropriate types of robotics hardware.

IAR212
6 Axis Robot Arm
PDHs: 2 CEUs: 0.2 Format: Self Study
Learn key foundational knowledge, specifications, requirements, and operations of 6 Axis robot arms.

RB210
Assessing Suitability for Robotics in Manufacturing: A Case Study
PDHs: 10 CEUs: 1 Format: Self Study
Review, select, and plan the successful integration of a robot to automate a portion of an industrial process through a real-world case study.
Learn more about how we can help you achieve your workforce development goals:

Contact learningsolutions@asme.org or visit go.asme.org/evolve